Increase Information Transfer Rates in BCI by CSP Extension to Multi-class
نویسندگان
چکیده
Brain-Computer Interfaces (BCI) are an interesting emerging technology that is driven by the motivation to develop an effective communication interface translating human intentions into a control signal for devices like computers or neuroprostheses. If this can be done bypassing the usual human output pathways like peripheral nerves and muscles it can ultimately become a valuable tool for paralyzed patients. Most activity in BCI research is devoted to finding suitable features and algorithms to increase information transfer rates (ITRs). The present paper studies the implications of using more classes, e.g., left vs. right hand vs. foot, for operating a BCI. We contribute by (1) a theoretical study showing under some mild assumptions that it is practically not useful to employ more than three or four classes, (2) two extensions of the common spatial pattern (CSP) algorithm, one interestingly based on simultaneous diagonalization, and (3) controlled EEG experiments that underline our theoretical findings and show excellent improved ITRs.
منابع مشابه
Filter Bank Common Spatial Pattern Algorithm on BCI Competition IV Datasets 2a and 2b
The Common Spatial Pattern (CSP) algorithm is an effective and popular method for classifying 2-class motor imagery electroencephalogram (EEG) data, but its effectiveness depends on the subject-specific frequency band. This paper presents the Filter Bank Common Spatial Pattern (FBCSP) algorithm to optimize the subject-specific frequency band for CSP on Datasets 2a and 2b of the Brain-Computer I...
متن کاملAbstract— The Filter Bank Common Spatial Pattern (FBCSP) algorithm constructs and selects subject-specific discriminative CSP features from a filter bank of spatial- temporal filters in a motor imagery brain-computer interface
The Filter Bank Common Spatial Pattern (FBCSP) algorithm constructs and selects subject-specific discriminative CSP features from a filter bank of spatialtemporal filters in a motor imagery brain-computer interface (MI-BCI). However, information from other types of features could be extracted and combined with CSP features to enhance the classification performance. Hence this paper proposes a F...
متن کاملMulti-Class Independent Common Spatial Patterns: Exploiting Energy Variations of Brain Sources
This paper presents a method to recover task-related sources from a multi-class BrainComputer Interface (BCI) based on motor imagery. Our method gathers two common approaches to tackle the multi-class problem: 1) the supervised approach of Common Spatial Pattern (CSP) to discriminate between different tasks; 2) the criterion of statistical independence of non-stationary sources used in Independ...
متن کاملClassification of Four-Class Motor Imagery Employing Single-Channel Electroencephalography
With advances in brain-computer interface (BCI) research, a portable few- or single-channel BCI system has become necessary. Most recent BCI studies have demonstrated that the common spatial pattern (CSP) algorithm is a powerful tool in extracting features for multiple-class motor imagery. However, since the CSP algorithm requires multi-channel information, it is not suitable for a few- or sing...
متن کاملA review on EEG based brain computer interface systems feature extraction methods
The brain – computer interface (BCI) provides a communicational channel between human and machine. Most of these systems are based on brain activities. Brain Computer-Interfacing is a methodology that provides a way for communication with the outside environment using the brain thoughts. The success of this methodology depends on the selection of methods to process the brain signals in each pha...
متن کامل